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ABSTRACT

——_& The extremal large deviation rate of the F-statistic over a large class isdetermined.

It -is shown that the Bahadur efficiency of the F-test relative to Moses' rank test
" for equality of variances is zero at every alternative when the distribution of

. the underlying observations if§ unspecified.
[~
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I. Introduction. Extremal large deviation rates measure the slowest rate of con-
vergence - to zero of certain sequences of probabilities. When these probabilities
arise from a sequence of test statistics, extremal large deviation rates fird
application in the computation of asymptotic relative efficiency (ARE) of tests,
such as Bahadur's definition of ARE.
The extremal large deviation rate of only a few common statistics is known.
Here we will determine the extremal large deviation rate of the F-statistic.
Before precisely defining extremal large deviation rates, we will discuss
Bahadur's definition of ARE, in which it finds application. Let (X, A) be a
measurable space. Let X = {Xi};_l be a sequence of random variables on
(X, A), and let P be a probability measure on (X, A) such that X is a sequence
of independent identically distributed random variables with common distribution

Po. Let C and C' be disjoint non-empty collections of distributions, and

F
consider the problem of testing

H: PeCvs.H: PeC'.
o a

Typically, decision rules are of the form "reject H, if S_exceeds som
specified value a', where Sn is a measurable real valued function of {xi}ng that

is § = ¢ Si]?-l is a sequence of test statistics. Call this test T (a).

Let §' = {Si}‘i'-l be another sequence of test statistics. Call the test
that rejects Ho when SI'I exceeds a specified value, say a', Ts,(a'). The test
Ts,(a') is a competitor to the test Ts(a). We choose between these tests by
considering their ARE.

The most important definitions of ARE are due to Pitman, (1949), iodges-

Lehmarr (1956), and Bahadur (1960). Under mild regularity conditions, evaiuation
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Definition 1: If

I

1

W(S, C, a) = -limn = log sup P(S_ 2 a)
T P M

is well defined, we say that W($, C, a) is the extremal large deviation rate at

a deviation of a for the sequence S under the classof probability models C.

That is, W(S, C, a) is a measure of the rate at which

sup P(S . a)
PeC

1\6;“ .-

converges tO zero.

A

Let C be such that for every P ¢ C,

R

< R

P(Sn +0) =1.

Consider the test Ts(a), where a > 0. MNw F;(a) - ;\:g P(S h 2 a) is the signi-
ficance level of T‘s(a), and Ln - F;(Sn) is the usual observed significance
level. IfPe ., P(Ln +0) =0 IfP§C (in particular, if P ¢ C', the
alternative class), then P(Ln +0) 1. In typical cases, L converges to

zero exponentially fast at non-null P.

Definition 2: The half slope of T_( ) at non-null P is given by

L (P) = -iimnt

log L [P]
Ty n

il

when the above is wzil defined,
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We may interpret p(P) as a measure of the rate at which the observed
significance level tends to zero, with large values indicating more rapid
convergence. Bahadur has exploited this property to define a measure of ARE,
described below.

Definition 3: Let TS(-) and Ts.(~) be as defined earlier. At non-null P,
let TS(-) -ave half slope p(P) and let Ts,(') have half slope p'(P). The

Bahadur efficiency of Ts('), relative to Tg1(+), at non-null P is given by
p(P)/o'(P).
The following theorem, due to Bahadur, relates the concepts of half slope

and extremal large deviation rates.

Theorem 1: (Bahadur, 1960). Let P(Sn + a(P)) = 1 at non-null P. Let
W(S, C, t) be well defined for t in a neighborhood of a(P) and continuous
at t = a(P). Then p(P) = W(S, C, a(P)).
Consider the case Sy = ! 321 X;, where C consists of a single distribution

i=1

F and [xd%(x) = 0. Using Chernoff's Theorem, stated below, evaluation of the

i

half slope of 5 at a fixed non-null distribution.is straightforward.

Theorem 2: (Chernoff, 1952). Let {xi};l be a sequence of i.i.d. random
tx
veriablec. Let ¢(t) = Ee 1, not necessarily finite for t = 0. Then for

every rezl a,
lin ™t

19 . -at
log Pn ~ | X; 2a) = inf log ¢(t)e ~ .
N i=1

t20

Hence, at non-mill G, the half slope of § equals -inf log ‘p(t)e'mt where
t20
o(t) = [ePAF() and = [xd6(x).
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II. Large Deviation Rates of the F-Statistic

Extremal large deviation rates over a .«rge class have only been evaluated
in a few instances. For example, if the statistic of interest is a linear
rank statistic, a straightforward method exists. See Klotz (1965), who
evaluates the half slope of the Wilcoxon rank sum statistic, as well as uther
linear rank statistics.

One of the few non-distribution-free statistics for which the extremsl
large deviation rate has been studied is the t-statistic.

i=1

’ {Yi}l'l

of mutually independent identically distributed random variables, with common

Theorem 3: (Jones and Sethuraman, 1978). Let {X,} be two sequences

distribution F and joint distribution Pp. Let

1%, T =nl]
X =n X., = n Y.,
*n i=p 11 i=1 *
2 192 2
Sen =P 'E Xi - (Xn) , and
i=1

2 -1 8.2

=1 Y S 2
Sy,n izl i- (Yn) .

Define the one-and two-sample t-statistics, Ei n and T2 n respectively, as
. 4

v 0.2 Nk
xn/(sx,n) and

- 2,2
(X, - Y/ (s p + sy /D)

Tl,n

TZ,n

where expressions of the form r/0 are interpreted as

v

n
S O o

+ 1f
0 if
-o  if

A
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Let C, = {F: F is symmetric about 0} and let C2 ~» {(F, G): F =G},

et s J8) = S16QL + o/ (1 + 209, 3,
P1 12

where for 0 < Pys Py < 1, I(pl, pz) = p; log -—E+ @ - py) log 1———-—-—

Further, this rate of convergence is achieved by a t-statistic based on

1
Then for every 2 > 0, j =1 or 2, W({T

symmetric Bernoulli observations. That is, the t-statistic converges most

slowly when based on cymmetric Bernoulli observations.

S2 z
i=1* “x,n’ y,

in Theorem 3. Let the F-statistic, F(n), be given by sx n/sy . Let the
’

Definition 4: Let {X, }1,1, Y, ¥ , and indeterminant.forms be as

shifted F-statistic, Fs(n), equal F(n) - 1.

It is reasonable to base a test of equality of variances, assumed to
exist, on Fs(n), with large values indicating rejection. Under the null
hypothesis, Fs(n) + 0 a.s. At an alternative Ha’ Fs(n) + a(Ha)' a.s., where
a(Ha) is assumed positive, We will now determine the large deviation rate of

F s (n) under certain parametric assymptions.

Theorem 4: Let F assign mass s each to 21, That is, F is a symmetric Bernoulli
distribution. Let {)(]L Y (Y. 1} i=1 be mutually independent identically dis-
tributed random variables, with common distribution F. Let Fs (n) be based

on {X, }1=1, {Y, }131 Then for any a > 0,

Lim 2

log P(F.(n) 2 a) = I(s(1 + (a/1 + a)”), %)
b 0l

where I(*, *) is as in Theorem 3.

Proof: For any real a,

P(F(n) 2 ) = P(s n/sy’ 21+a) =P(A-F/A-T) 21+a) =

I, 2
P((1 + a)Y121 - xrz1 2a) s P(Yn 2 a/(1 + a);.

e S TR




By Chernoff's Theorem,
1 @innl 1og P(Y; > 8/(L + &) = (-I(51 + (a/a + 1)9), %),
0

Choose and fix g, 1 > ¢ > 0. Now P(F (n)za)-P(a-sgﬁ)/u ?)21+9) 2

P2 2 @+ /@), R<e)=P(T22(a+e)a+1) P < ).
But lim log P(Xn <g) = 0;
T .
Hence lim lim n 1
o Ine )
lim lim n*" Tog P(Y 2 (a + €)/(a+ 1)) =
) e ;!
lim -I(s(1 + ((a + €)/(@a +1))%), %) =
0 10+ (@ ¥ /(@ + 1), %).
By lines 1 and 2,

log P(Fs(n) za) ¥ ‘

! 10g PP (M) 2 8) » 140 ¢+ @/a + 1), W), O

-lim n

N
Theorem 5: Lot F be a normal distribution, with mean u and variance o > 0.
Let {X,)5,), {¥;};,; bemutually - independent identically distributed random
variables with comon distribution F. Let F_(n) be bused on {X;)],1, {¥;}7u;-
Then for any a 2 0,

-Lin 0"} 1og P(F,(n) 2 a) = log(2(a + 1)¥/(a + 2)).
N

Proof: Without loss of generality, let u = 0, o’ = 1. Let (U;)}.;, (V)5

be two sequences of mutually independent identically distributed random

variable with common Xf distribution. Then for every a 2 0,
P(F (n) 2 a) =
r’1  n-1
P(Xb/ZV 2a+l)=
i=l © =]
. n-1 n-1
- P(IU; 2 ['(a+ 1)Vy) =
,?» i= i=
g::, n-1
% P('Zl(ui - (a+ 1V)/(r - 1) 2 0).
1?-.'
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By Chernoff's Theorem

1

n-
1mn 1og P(J (U - (a+ LV))/(n-1) 20) =

e i=]

inf log(l + 2at - 4(a + 1)t2)"’ -
t20
log(2(a + 1)'Y(a + 2)). O

In Table 1, we display I(4(1 + (a/(a + 1)), %) and -log(2(a + 1)'¥/(a + 2))
for selected values of a » 0. We see that Fg (n) converges to zero more ra}idly
under some alternatives when the null distribution of the underlying observations

is normal than if the null distribution of the underlying observations is

symmetric Bernoulli. Unlike the t-statistic, the F-statistic does not converge

most slowly when the underlying observations have a symmetric Bernoulli

distribution.




I1i, Extremal Large Deviation Rates of the F-statistic. Before dealing with

the F-c~:tistic, which is used ¢o test for equality of variances, we will
consider a related statistic used for testing the equality of means of positive

random variable. .

Definition 4: Let {xi);‘_l. {Yi}'i',,1 be mutually independent identically dis-
- tributed random variables with common distribution F ¢ G, where
C » (F: fEdF -1, 0< [;xdF(x) < =}. Define the ratio statistic, R, as

(/%) - 1, vhere X " ?n, ard indeterminate forms are as in Theorem 3.
The statistic Fh. can be uszd to test HO: E}(l - EYl. Under HO' Rn +0
z.¢. Under a pon-mil F, P‘n + a(F) a.s. Without loss of generality, assume

«{F) > 0.

Trzorant &, Ler (X 1;1’ {y, }1’1: G, and Ph be as in Definition 4. Then for

averr a o O

W(Bm, G, a) ~ 0,
vrovst Tet F be a fixed but unspecified distribution in G. Clearly,

”~ !“‘ L] o - ; -1

bt 2o G he hoom, ozl fined, Lot o = eflog(l + (az)/4(a +1)), ard let

. US e Couas {o, 10 Alstrisutica, Then

4 n n
(Foza)=limn logP(IX. 2(@a+1)]Y)=
- ) ps Flym 1 jup 1

X, - (a+1)Y, 2 0) = log inf p(t) v(-(a + 1)),
‘4 t20

Crazaollts Theoran, vhere w(z) = (1 - t) %




By elementary methods, log :xz\g v(¢) w(-(a ¢ 1)t) = -¢. The result follows,
taking the limit as ¢ + 0. 0O

Before determining the extremal large deviation rate of the F-statistic,
some preliminary results are needed.

Lema 1. Let x tend to zero from above. Then I(%(L + x), %) = x/2 + 0(x%).
Proof: Expanding I(s(1 + x), %) as a Taylor series, the result follows.

Lemma 2 (Jones and Sethuraman, 1978). Let {Xi};_l be a sequence of i.i.d.
symmetric random variables.
Then for every sample sizen and b ¢ (0, 1)

P(iXIXi/ (iilxi) z2n° b) < exp(-nI(4(1 + b), 4)).

We are now ready to determine the extremal large deviation rate of the

F-statistic over appropriate classes.

Theorem 7. Let F = {F: F is symmetric about 0, fxzdF < »}, Let ““1’2-1""1’1-:
be two sequences of mutually independent identically distributed random
variables with common distribution F, where F ¢ F. Let Fs (n) be based on

U},

i1} {vi}.i.-l' Then for every a 2 0,

W(Es(n), F, a) = 0.

Proof: Choose and fix ¢ > 0. It is sufficient to find an F in F such that
1

lim n~
e

log PF(Fs(n) 2 a) 2 -¢e.
Let o be chosen as in Theorem 6. Let {X}i,, {¥;}

o
is1

independent identically distributed random variables such that Xf has a

be mutually




10 i

be mutually independent

identically distributed symmetric Bernoulli random variables, independent of

Xi¥1my» ()i Let Fo(m) be based on {U;}j. = {n;X; 3a 20d

Gamma (G, 1) distribution. Let {6i}i’1’ {ni}i=1

A MR RCHA ST

Letz-l-(a+1)(2Y2/2)() For any & > 0,

, ‘ 2 n 2 2
PF(F S 2 a) = Pp((a + 1)(izlciYi) - (izlnixi) 2 n(i§1(a + 1)Y; - X)) =

-~

L2 1 2
pp((i§1nixi) < ncizl(a + 1)Y; - 2x 1+ (a+ 1)( { 8;Y;) 2y 2
n 2 n 2 n 2 n 2 ™
PF((-Z ngX;)” ¢ ni‘z'lxi 7) = EFPF((izlniXi) s ni§1xi Z)(X;, ¥;Ya)
t: hoak . ok =
3) 1-2 EPP((-Elnixi)/(n-zlxi) 2 1 ‘{xi’ Yi}i'l) 2
1- 1-

@ EQ - 2 eplults + 29, W YY) 2

oo 1051 + 29, %) 12 = Um0, Yidiap) 2

1 - 2 ep(-alGs + @/, PR 2 U, ;

where (4) follows from (3) by Lemma 2.

, 1 -2exp(-n I1¢:Q + (2/n) ), 1) is asymptotic to @ - 2 exp(-1)).

ByLemma

By direct substd “ution,

1 AR A AU A S tRI 5

n
Pt > 2/m) = Pyl { /zliz(an)n/(n-zn.
. 1.
2/H >a+1) = -c

-1 log 1 4(Fg (n) 2a) 2 lmnllog PF(}:X
i=l

Hence, limn
) 3aad

v-gr-n“ & €A1l ~
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One is tempted to conjecture the existence of a subclass of F, say F*,
such that W(gs(n), F*, a) > 0. No such class has been discovered, although a
nutber of candidates have been ruledout. Notice that the construction in
Theorem 7 is scale invariant. By suitable scaling, this construction can be
radc to satisfy any condition on the absolute first moment, the second moment,
or the pth percentile of the underlying distribution. Restricting the
underlying observations to the class of symmetric and bounded distributions

Coss not yield a non-zero extremal large deviation rate, as can be seen below.

Theorem 8: Let H = {F: F is symmetric about zero, and has support in -1, +1l}.

vet (X;}inyo {Yi}‘;i'_1 be two sequences of mutually independent identically

distributed random variables with common distribution F, where F ¢ H. Let

Fs(n) be besed on {X;, Y.}

Vsl Then for every a 2 0, W(gs(n), H, a) = 0.

Proof: Proceeding as before, let € > 0 be chosen and fixed.
Let H be +he distribution that assigns mass e © to 0 and is uniformly

3imemihpt~d ooy (-1, +1) with probability (1 - € ®). Then for every a 2 0,

lin 0! log Py(F (n) 2 a) 2
T S -

lin 0t log Py(F (n) = +=) =
N .

. N 2
1:ant log Pi(ss >0 =0) =
n-»:n o8 H(sxrn > S)'sn .)
155 n T e Dl 2 0) i P(si L= 0=

3 H
me 1 -1 -Ne
lim n “{log(l - e “7) + log(e ")} =
T

-e. [
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V. Efficiencies of Tests for Equality of Variances

Consider the problem of testing for equality of variances of two popula-

tions, with underlying distributions unspecified. The usual procedure is to
reject the null “ypothesis, equality of variances, if the statistic Fs(n)
exceeds some specified value. Call this test Tl' Let us consider a

competitor to T1 .

Moses (1963) has proposed a distribution-free test for equality of
variances. Moses recommends randomly allocating {Xi}liqzl intc n subsamples of
size k, and calculating sample variances. This is repeated with {Yi}lic-zl’ and
the two collections of sample variances are then compared by means of the

Wilcoxon rank sum test. Call this test T,.
It is known that the half slope of the Wilcoxon rank sum test is positive.

Hence, the half slope of T, 1> also positive. By Theorem 7, the half slope
of '1'1 is zero at every alternative. Hence, at every alternative, the
Bahadur efficiency of the F-test, relative to Moses' test, is zero.

While the t-test performs relatively well against distribution free
cempetitors, the F-test performs as poorly as possible. One is tempted to

rropos: a '-*2st for variances" of the form

P T SN S B
%) (Sx,n Sy,n)’/(sx,n * sy,n)

The statistic Sn can be shown to be a monotone increasing function of Fs(n)
if Fs (n) > 0 and a monotone decreasing function of FS (n) if Fs(n) < 0. Hence,

the half slope of Sn is zero at every alternative, just as the half slope of

F.(n} is.




Deviation

a
05
10
a5
.20
25
.30
.35
40
45
.50
.55
.60
.65
.70
.75
.80
.85
.30
.95
1.00
1.25
2.50
2.75
3.00

13

Table 1: Large Deviation Rates of the F-statistic

Normal Observations
“log(2(a + DY/ (@ + D)
.06030
.00114
.00244
00415
.00621
.00858
.01122
.01652
01716
.02041
.02382
.02736
.03102
.03479
.03865
.04257
.04658
.05064
.05474
05889
.08004
10147
.12281
.14384

Bernoulli Observations
I+ a2+ 0P, %
02400
04617
06672
.08582
.10363
.12029
.13591
.15058
.16440
17744
.18977
.20144
.21251
.22304
.22305
.24259
.25169
.26038
. 26869
. 27665
.31188
.34102
. 36557
.38658
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Deviation

a

3.50
4.00
5.00

. 6.00

7.00
~8.00

9.00
10.00
11.00
12.00
13.60
14.00
15.00
20.00

(continued)

18455
22314
.29389
35688
41334
146436
51083
56358
.59281
62934
66344
69537
72542
85351

o

14

Table 1

Nommal Observations

-log(2(a + 1% (a + 2)

Bernoulli Observations
TGQ + @/a D7,
42072
.44737
.48651
.51406
.53456
.55052
.56332
.57618
.58264
.59014
.59660
.60225
.60721
62526

log 2



e kk,,,._\wm,wm%
"nY

NEREptoms v

15

REFERENCES

Bahadur, R. R. (1960). Stochastic comparison of tests. Annals of Mathematical
Statistics. 31, 276-295.

(7967) . Rates of convergerce of estimates ard test statistics.
Annals of Mathematical Statistics 38, 303-3285.

(1971). Some Limit Theorems in Statistics, SIAM, Philadelphia.

Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a
hypothesis based on the sum of observations. Annals of Mathematical
tatistics 23, 493-507.

Jones, D. H. and Sethuraman, J. (1978). The efficiency of some nonparametric
competitors to the t-test. Annals of Mathematical Statistics 27,
324-335,

Klotz, J. (1965). Alternative efficiencies for signed rank tests. Annals of
Mathematical Statistics 36, 1759-1766.

Hodges, J. L. and Lehmann, E. L. (1956). The efficiency of some nonparametric
competitors to the t-test. Annals of Mathematical Statistics 27,
324-335.

Moses, L. E. (1963). Rank tests for dispersion. Annals of Mathematical
Statistics 34, 973-983.

Pitman, E. J. G. (1949). Lecture notes on nonparametric statistical inference.
Tolumbia University.

Fhina




UNCLASSIFIED

<

"REPORT DOCUMENTATION PAGE

SECURTTY CLASSIFICATION OF THIS PACE
FSU No. M523 ° l

USARD No. D-42 |
4. SITLE

THE EXTREMAL LARGE DEVIATION RATE OF THE
F-STATISTIC

S L]
COVERED

Technical Re%rt

7. AJTIOR (5)

L. Barker
J. Sethuraman

FSU Statistics Report MS529
8. CONTRACT OR GRANT ﬁUMBER'lsS

~
USARO DAA’29-76-G00278’@%

The Florida State University
Department of Statistics
Tallahassee, Florida 32306

0. PROGRAM ELEMENT, PROJECT,
TASK AREA § WORK UNIT NUMBERS

1T TONTROLLING OFFICE NAME & ADDRESS

U.S. Army Research Office-Durham
P.0. Box 12211
Research Triangle Park, NC 27709

REPORT DATE
October, 1979

2.

"AGENCY NAME § ADDRESS (if
different from Controlling Office)

.

I

3,

\,
A
i

H

15
5. SECURTTY CLASS{of this report)

Unclassified

a.
SCHEDULE

. T8, DISTRIBUTION STATEMERT (of this report)

Approved for public release; distribution unlimited.
rr“ﬁ%mm STATEMENT {of the abstract entered in Block 20, if different from

report)
I8, SOPPLEMERTARY NOTES
19, fEY WORDS
i Bshadur efficiency, extremal large deviations, F-statistic, nonparametric tests.
20.

equality of variances is zero at every alternative when the
cbservatrions in unspecified.

The extremal large deviation rate of the F-statistic over a large class is determined.
It is shown that the 8ahadur efficiency of the F-test relative to Moses' rank test for

distribution of the underlying

SR D gt e et e e L o o




